# Cameco Corporation [NYSE: CCJ]

ality the barrow

Price Target: \$14.09 Upside: 46%

# Industrials & Energy

Connor Dessert Santiago Diaz Brett Bonikowski Michael Botting Matthew DeBrunner

- I. Overview of Uranium Market
- II. Investment Thesis
  - I. <u>Narrative</u>
  - II. <u>Thesis I</u>
  - III. <u>Thesis II</u>
- III. Valuation
- IV. Appendix
  - I. Nuclear Fuel Cycle
  - II. U<sub>3</sub>O<sub>8</sub> Contracts & Pricing
  - III. Demand
  - IV. Nuclear Reactor Construction
  - V. Versus Wind and Solar
  - VI. <u>Safety</u>
  - VII. Alternative Fuel Sources
  - VIII. <u>UxC</u>
  - IX. Political & Regulatory
  - X. Tear Sheet
  - XI. DCF

# **Overview of the Uranium Market**

# Opaque market with little price discovery occurring outside of long-term contracts

#### Long-term contracts

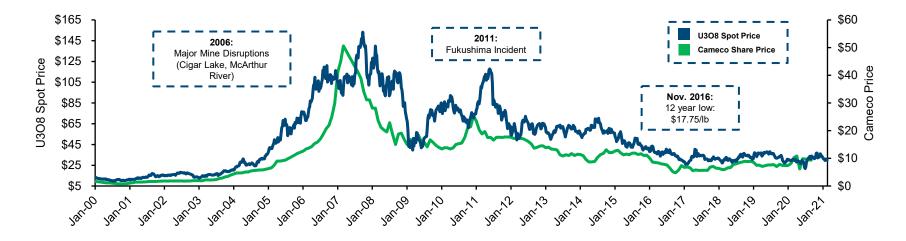
- > 7-10 years in length
- > Price discovery occurs here

#### >Bilateral vs. Request for Proposals

> 85% of volume negotiated bilaterally (confidential prices)

#### ➤Utility behavior

- > Cyclical contracting periods
- > "Rush" to contract until perceived supply deficits overwhelm security of supply
- > U<sub>3</sub>O<sub>8</sub> is only 4-8% of utility operating costs

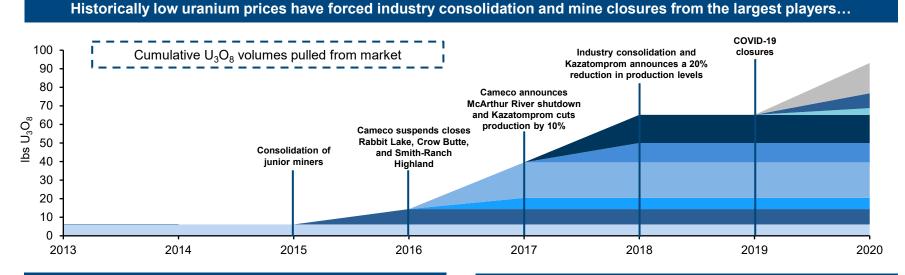

#### Inaccurate and delayed price reporting

- > UxC has limited and delayed information to report
- > Creates inefficiencies in utility contracting and capital markets

# Investment Thesis

# **Investment Narrative**

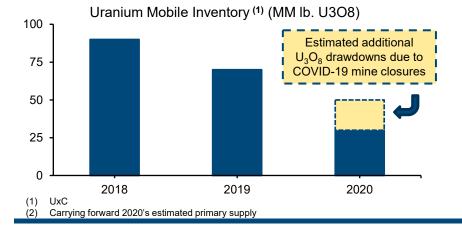
A qualitative overview before we get into the numbers...




> Supply and demand are important factors in a materials market

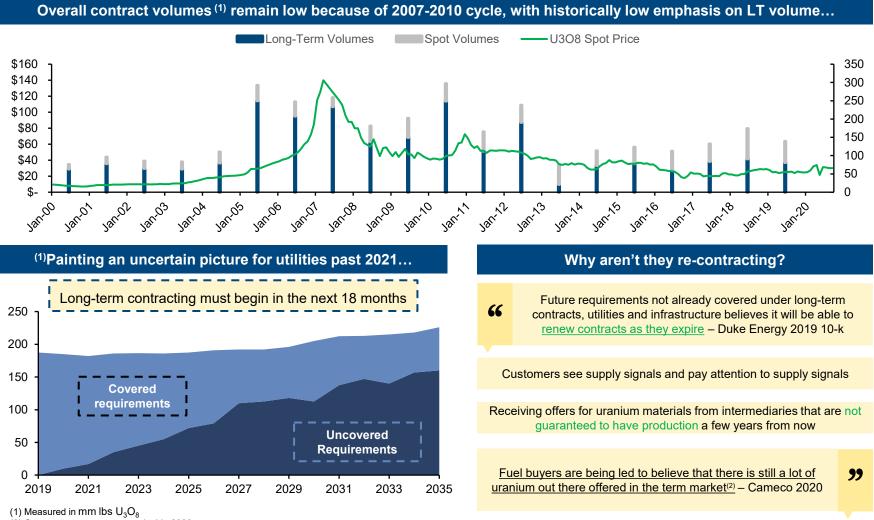
- > Fukushima incident took 54 reactors offline indefinitely (~13% of global demand), creating structural supply surplus
- > Surplus exerted downward pressure on  $U_3O_8$  prices, pushing it below AISCs for many suppliers
- > Since 2015, suppliers have significantly curtailed production, drawing down inventories and stockpiles to fill contracts
- > The diminished secondary market poses a serious threat to security of supply at current primary production levels
- > We believe utilities must return to the long-term market within three years, or they will not have fuel for their reactors

# **Shrinking Supply Security**


### Security of supply is incredibly important for utilities, and it's not looking great...



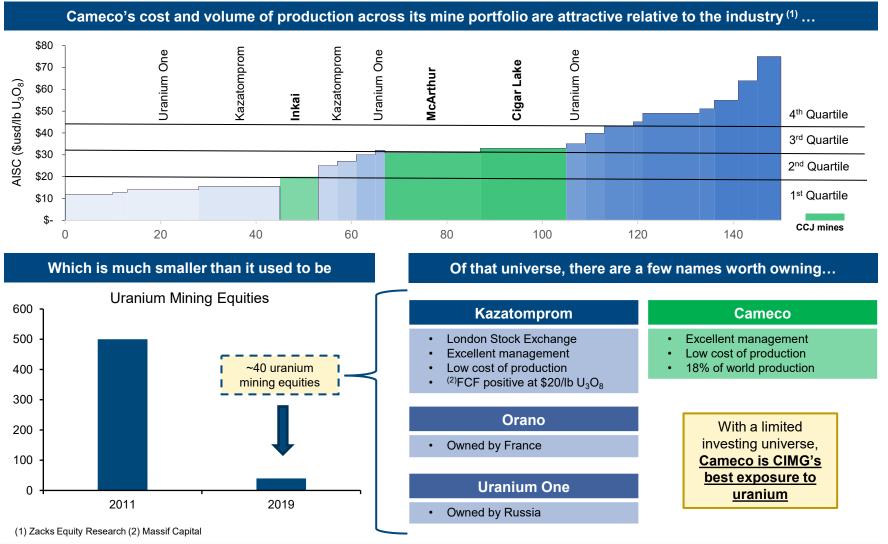
Causing accessible mobile inventories to shrink...




- > 2-years of production requirements in inventories = 400 mm
  - Estimated 2021 "all-in" supply = 150-160 mm
    - > 2021<sup>(2)</sup> primary supply = 120-130 mm
    - Leftover 2020 mobile inventories = 30 mm
  - Assuming 2021 utility consumption of 200 mm, acquiring all available U<sub>3</sub>O<sub>8</sub> supply results in a 40-50 mm inventory deficit

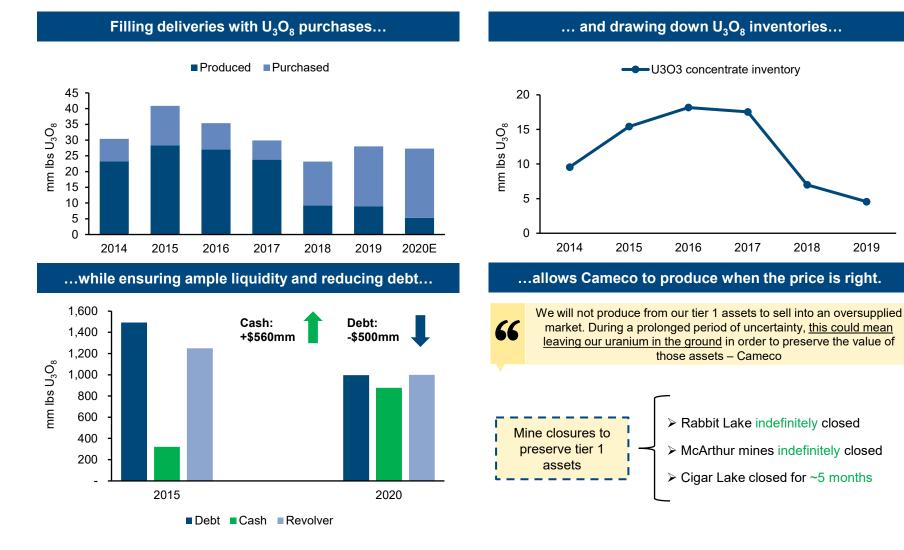


# **Failure to Contract and Uncovered Utility Requirements**


# Utilities have been dragging their feet to re-contract due to mixed market signals



(2) Cameco management, round table 2020


# Why Cameco?

# An industry leader in production cost & market share



# Why Cameco? A Tier-I Preservation Strategy

### Cameco's management has ensured they'll be able to protect their most valuable assets...



# Valuation

# Model Assumptions and Price Target

# Contract prices dictate when the mines reopen

# Bull Case (\$16.52 @ 35%)

- Recontracting efforts begin 1H21, prompting the reopening of mines in 2H21 with a return to full operation in 2H22
- Uranium prices at a 15% premium to current forward estimates
- Accelerated margin expansion as production is moved up

| P/V            | 0.61 |
|----------------|------|
| V/P            | 1.63 |
| Implied upside | 63%  |

| 2025 EBITDA                     | \$<br>1,165  |
|---------------------------------|--------------|
| 2025 Enterprise value           | \$<br>10,386 |
| Implied EV/EBITDA exit multiple | 8.92x        |

### Base Case (\$14.41 @ 50%)

- Recontracting efforts begin 2H21, prompting the reopening of mines in 1H22 with a return to full operation in 1H23
- · Uranium prices at current forward estimates
- Median margin expansion as production is between bull and bear

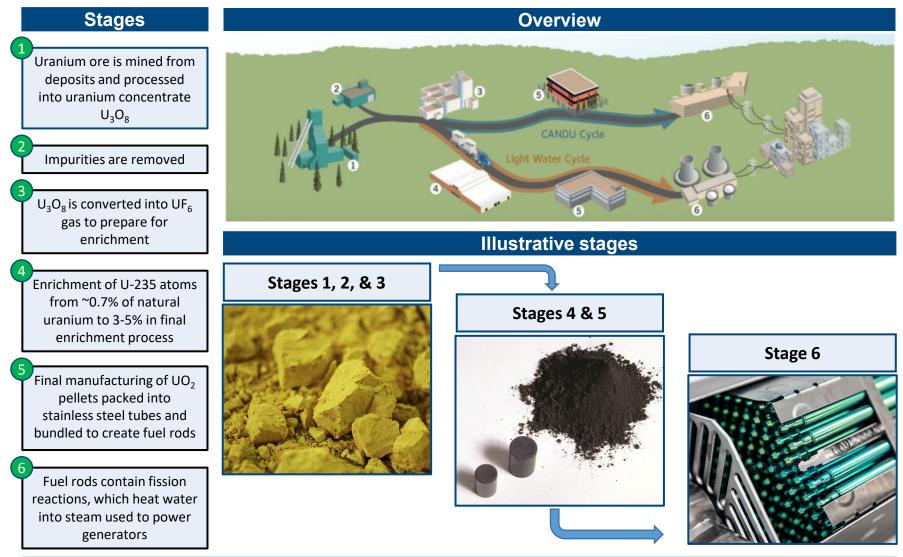
| P/V            | 0.70 |
|----------------|------|
| V/P            | 1.42 |
| Implied upside | 42%  |

| 2025 EBITDA                     | \$<br>1,131 |
|---------------------------------|-------------|
| 2025 Enterprise value           | \$<br>8,876 |
| Implied EV/EBITDA exit multiple | 7.85x       |

# Bear Case (\$7.37 @ 15%)

- Recontracting efforts begin 1H22, prompting the reopening of mines in 1H23 with a return to full operation in 2H23
- Uranium prices at a 35% discount to current forward estimates
- Delayed margin expansion as production is delayed

# Expected Value: \$14.09


| P/V            | 1.38 |
|----------------|------|
| V/P            | 0.73 |
| Implied upside | -27% |

| 2025 EBITDA                     | \$<br>703   |
|---------------------------------|-------------|
| 2025 Enterprise value           | \$<br>4,817 |
| Implied EV/EBITDA exit multiple | 6.85x       |



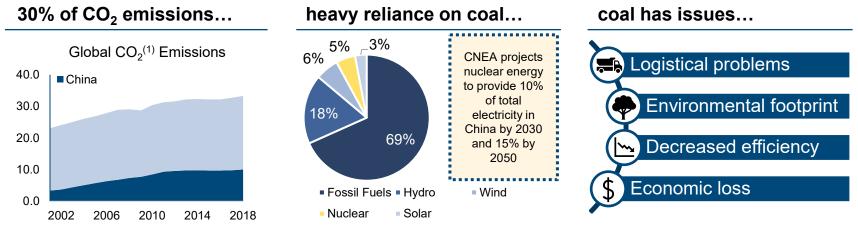
# **The Nuclear Fuel Cycle**

# From mine to fuel bundle...



# How is U<sub>3</sub>O<sub>8</sub> Priced?

It's an opaque market with little price discovery occurring outside of long-term contracts


- There's not really a "spot price" or a "long-term contract price" ... these are both reported by a couple of price reporters who depend on their relationships in the industry and publish anonymized deals to get the most recent transaction prices.
- Long-term contracting process:
  - > Utility sends out an RFP
  - > Negotiations
  - Contractual negotiations
  - > A couple of months later this deal filters out to the price reporters
- >Long-term contracts aren't standard across the industry...
  - They're usually 60% fixed price that escalates over the course of the contract with the other 40% negotiated as a premium or discount to the "spot" price. There are cuffs and collars to prevent prices from swinging too wildly throughout the contract lifecycle.



Source: Un Consulting and TradeTech, Numeroo April 1, 2019

# What is going in China?

# The impetus for nuclear is increasing due to air pollution from coal-fired plants



| The role of nuclear power in decarbonization                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                               |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Why decarbonization?                                                                                                                                                                                                                                            | Renewable energy                                                                                                                                                                                                                                                                      | Nuclear option                                                                                                                                                                                                                                                          | Current initiatives                                                                                                                                                                                                                                                           |  |  |  |  |
| <ul> <li>Climate system responds to cumulative GHG emissions</li> <li>CO<sub>2</sub> can remain in atmosphere for several centuries</li> <li>Stabilizing emissions is not enough</li> <li>Goal is to reduce CO<sub>2</sub> emissions to zero by 2060</li> </ul> | <ul> <li>Leader in manufacturing<br/>and deployment of wind and<br/>solar generation</li> <li>Resources are in central<br/>China, but consumption<br/>centers are on the coasts</li> <li>Deployment costs are<br/>greater than construction<br/>cost of wind / solar farms</li> </ul> | <ul> <li>48 operating reactors</li> <li>12 under construction</li> <li>Building 6-8 reactors a year</li> <li>200 reactors by 2060</li> <li>Requiring ~70 million lbs of<br/>uranium per year (28% of<br/>existing demand)</li> <li>Closed nuclear fuel cycle</li> </ul> | <ul> <li>Electricity Market reform</li> <li>Energy Development<br/>Strategy Action Plan</li> <li>Cut reliance on coal and<br/>promote clean energy</li> <li>Timely launch of nuclear<br/>projects on east coast</li> <li>Peak CO<sub>2</sub> emissions by<br/>2030</li> </ul> |  |  |  |  |
| Dependency on scaling up<br>renewable and nuclear<br>generation for electricity                                                                                                                                                                                 | Need a more reliable source<br>of energy for electricity,<br>increasing nuclear demand                                                                                                                                                                                                | <ul> <li>\$12 billion investment in 3<sup>rd</sup><br/>generation nuclear reactors<br/>to become self-sufficient</li> </ul>                                                                                                                                             | <ul> <li>GDP slowdown facilitates<br/>CO<sub>2</sub> peak by 2025-2030</li> </ul>                                                                                                                                                                                             |  |  |  |  |

# **Nuclear Power in Europe and Emerging Markets**

### Positive news on the demand side for Uranium

#### **European Union**

- EU becoming carbon neutral by 2050 with leaders acknowledging nuclear energy as part of the solution that must be included in the Green Deal agreement
- France delays their plan to reduce nuclear dependency from 75% to 50% by 10 years to 2035
  - Increasing uranium demand by ~5 million pounds per year (2% of existing global demand)

#### India

- Reinforced the country's aggressive pursuit of new nuclear power plants in order to improve the reliability of their power supply
- Currently 9 reactors under construction and government has granted administrative and financial support to build an additional 12 new reactors with capacity of 9,000 MW(e)

#### China

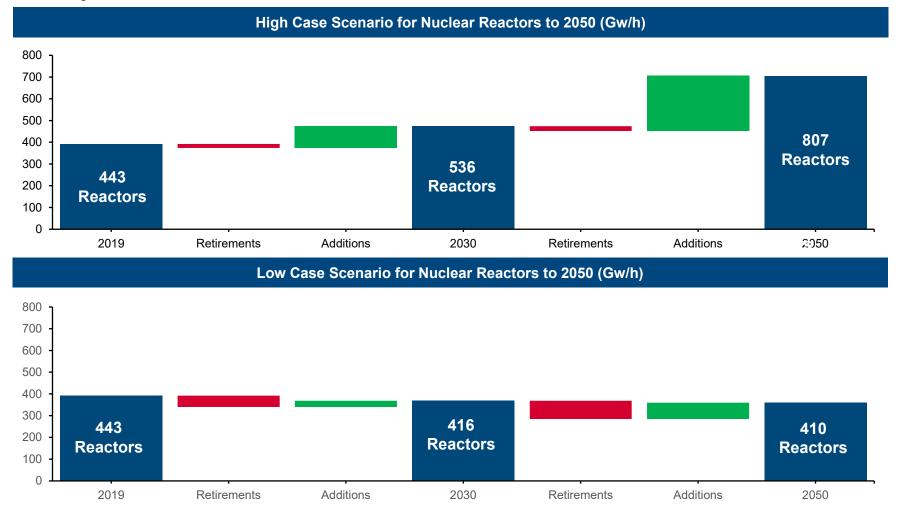
- Entered the market in 2010 and purchased contracts from 2014-2025, which are expiring soon
- Currently produces 15 million pounds, leaving 35 million to come from outside suppliers
- Announced decarbonization plan by 2060, which depends significantly on scaling up renewable and nuclear generation in the electricity section

#### Taiwan

- Overturned "nuclear free 2025" mandate imposed by the anti-nuclear democratic progressive party in 2017
- Possible future pro-nuclear decisions regarding extending the lives of existing nuclear power plants and completing the Lungmen nuclear plan

#### Russia

- No populist energy policy favoring wind and solar, the priority is unashamedly nuclear
- Projected to have half of its total electricity provided by nuclear and hydro in 2030
- "Russia's GDP gained three rubles for every ruble invested in nuclear power plants"- Rosatom
- RSA agreement expires in 2020 and is currently under review


### Middle East (UAE)

- Offering joint-venture contracts to foreign investors for the construction and operation of future nuclear power plants
  - Accepted a \$20 billion bid from South Korea to build 4 commercial nuclear reactors by 2020

66 Nuclear energy emerged as an environmentally promising and commercially competitive option with potential base-load contributions to the economy and future energy security – UAE Government Official

# 2020 International Atomic Energy Agency Nuclear Demand Projections

### Steady bear case demand...



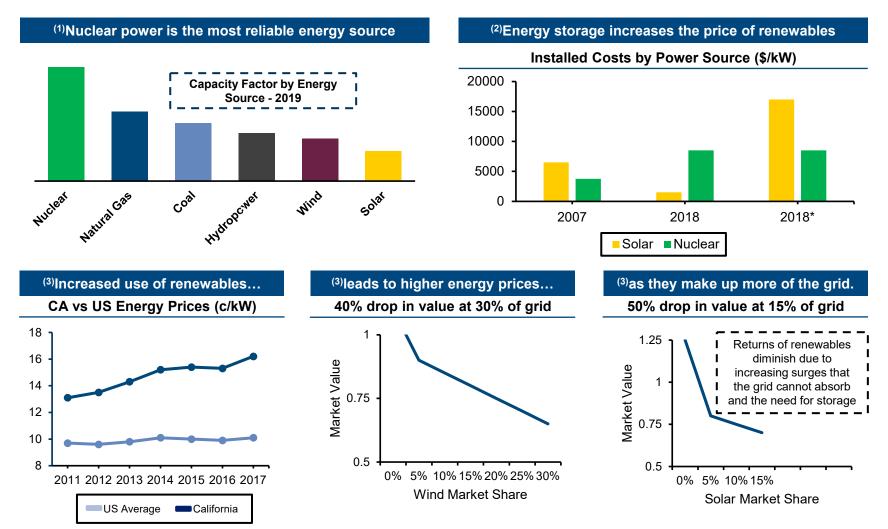
# **Nuclear Power Reactors In The World (end of 2019)**

Appendix

| Country        | <b>Operational Units</b> | Net Capacity | Units Under Construction | Net Capacity | Share of total electricty produced |
|----------------|--------------------------|--------------|--------------------------|--------------|------------------------------------|
| Argentina      | 3                        | 1641         | 1                        | 25           | 5.8%                               |
| Armenia        | 1                        | 375          |                          |              | 27.3%                              |
| Bangladesh     |                          |              | 2                        | 2160         |                                    |
| Belarus        |                          |              | 2                        | 2220         |                                    |
| Belgium        | 7                        | 5930         |                          |              | 46.2%                              |
| Brazil         | 2                        | 1884         | 1                        | 1340         | 2.5%                               |
| Bulgaria       | 2                        | 2006         |                          |              | 40.5%                              |
| Canada         | 19                       | 13554        |                          |              | 15.1%                              |
| China          | 48                       | 45518        | 11                       | 10564        | 4.7%                               |
| Czech Republic | 6                        | 3932         |                          |              | 35.7%                              |
| Finland        | 4                        | 2794         | 1                        | 1600         | 34.7%                              |
| France         | 58                       | 63180        | 1                        | 1630         | 70.0%                              |
| Germany        | 6                        | 8113         |                          |              | 12.2%                              |
| Hungary        | 4                        | 1902         |                          |              | 48.8%                              |
| India          | 22                       | 6255         | 7                        | 4824         | 2.7%                               |
| Iran           | 1                        | 915          | 1                        | 974          | 1.9%                               |
| Japan          | 33                       | 31679        | 2                        | 2653         | 6.7%                               |
| Korea          | 24                       | 23172        | 4                        | 5360         | 25.0%                              |
| Mexico         | 2                        | 1552         |                          |              | 3.3%                               |
| Netherlands    | 1                        | 482          |                          |              | 3.2%                               |
| Pakistan       | 5                        | 1318         | 2                        | 2028         | 6.4%                               |
| Romania        | 2                        | 1300         |                          |              | 18.8%                              |
| Russia         | 38                       | 28437        | 4                        | 4525         | 18.6%                              |
| Slovakia       | 4                        | 1814         | 2                        | 880          | 51.9%                              |
| Slovenia       | 1                        | 688          |                          |              | 37.2%                              |
| South Africa   | 2                        | 1860         |                          |              | 5.7%                               |
| Spain          | 7                        | 7121         |                          |              | 21.2%                              |
| Sweden         | 7                        | 7740         |                          |              | 42.0%                              |
| Switzerland    | 4                        | 2960         |                          |              | 38.1%                              |
| Turkey         |                          |              | 1                        | 1114         |                                    |
| Ukraine        | 15                       | 13107        | 2                        | 2070         | 55.4%                              |
| U.A.E          |                          |              | 4                        | 5380         |                                    |
| United Kingdom | 15                       | 8923         | 2                        | 3260         | 16.5%                              |
| U.S.A.         | 96                       | 98152        | 2                        | 2234         | 19.3%                              |
| World Total    | 443                      | 392098       | 54                       | 57441        | 10.4%                              |

(1) Net Capacity measured in MW(e)

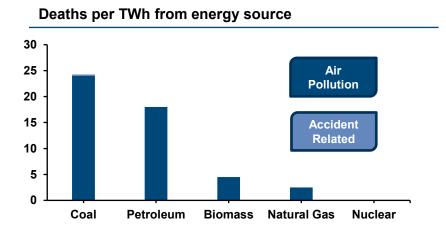
(2) Source: "Energy, Electricity and Nuclear Power Estimates for the period up to 2050" published by the International Atomic Energy Agency


### There are currently 54 reactors under construction around the world

| Start | Country               | Reactor          | Model       | Gross MWe |
|-------|-----------------------|------------------|-------------|-----------|
| 2020  | Belarus, BNPP         | Ostrovets 1      | VVER-1200   | 1194      |
| 2020  | China, China Huaneng  | Shidaowan        | HTR-PM      | 210       |
| 2020  | China, CNNC           | Fuqing 5         | Hualong One | 1150      |
| 2020  | India, NPCIL          | Kakrapar 3       | PHWR-700    | 700       |
| 2020  | Korea, KHNP           | Shin Hanul 1     | APR1400     | 1400      |
| 2020  | Russia, Rosenergoatom | Leningrad II-2   | VVER-1200   | 1170      |
| 2020  | Slovakia, SE          | Mochovce 3       | VVER-440    | 471       |
| 2021  | Argentina, CNEA       | Carem25          | Carem       | 29        |
| 2021  | Belarus, BNPP         | Ostrovets 2      | VVER-1200   | 1194      |
| 2021  | China, CNNC           | Fuqing 6         | Hualong One | 1150      |
| 2021  | China, CGN            | Hongyanhe 5      | ACPR-1000   | 1080      |
| 2021  | China, CNNC           | Tianwan 6        | ACPR-1000   | 1118      |
| 2021  | Finland, TVO          | Olkiluoto 3      | EPR         | 1720      |
| 2021  | India, Bhavini        | Kalpakkam PFBR   | FBR         | 500       |
| 2021  | India, NPCIL          | Kakrapar 4       | PHWR-700    | 700       |
| 2021  | Korea, KHNP           | Shin Hanul 2     | APR1400     | 1400      |
| 2021  | Pakistan              | Karachi/KANUPP 2 | ACP1000     | 1100      |
| 2021  | Slovakia, SE          | Mochovce 4       | VVER-440    | 471       |
| 2021  | UAE, ENEC             | Barakah 2        | APR1400     | 1400      |
| 2021  | USA, Southern         | Vogtle 3         | AP1000      | 1250      |
| 2022  | China, CGN            | Fangchenggang 3  | Hualong One | 1180      |
| 2022  | China, CGN            | Fangchenggang 4  | Hualong One | 1180      |
| 2022  | China, CGN            | Hongyanhe 6      | ACPR-1000   | 1080      |
| 2022  | India, NPCIL          | Rajasthan 7      | PHWR-700    | 700       |
| 2022  | Pakistan              | Karachi/KANUPP 3 | ACP1000     | 1100      |
| 2022  | Russia, Rosenergoatom | Kursk II-1       | VVER-TOI    | 1255      |
| 2022  | UAE, ENEC             | Barakah 3        | APR1400     | 1400      |
| 2022  | USA, Southern         | Vogtle 4         | AP1000      | 1250      |
| 2023  | Bangladesh            | Rooppur 1        | VVER-1200   | 1200      |
| 2023  | China, CNNC           | Xiapu 1          | CFR600      | 600       |
| 2023  | France, EDF           | Flamanville 3    | EPR         | 1750      |
| 2023  | India, NPCIL          | Kudankulam 3     | VVER-1000   | 1050      |
| 2023  | India, NPCIL          | Kudankulam 4     | VVER-1000   | 1050      |
| 2023  | India, NPCIL          | Rajasthan 8      | PHWR-700    | 700       |
| 2023  | Korea, KHNP           | Shin Kori 5      | APR1400     | 1400      |
| 2023  | Russia, Rosenergoatom | Kursk II-2       | VVER-TOI    | 1255      |
| 2023  | Turkey                | Akkuyu 1         | VVER-1200   | 1200      |
| 2023  | UAE, ENEC             | Barakah 4        | APR1400     | 1400      |
| 2024  | Bangladesh            | Rooppur 2        | VVER-1200   | 1200      |
| 2024  | China, Guodian & CNNC | Zhangzhou 1      | Hualong One | 1150      |
| 2024  | Iran                  | Bushehr 2        | VVER-1000   | 1057      |
| 2024  | Korea, KHNP           | Shin Kori 6      | APR1400     | 1400      |
| 2024  | Turkey                | Akkuyu 2         | VVER-1200   | 1200      |
| 2025  | China, CGN            | Taipingling 1    | Hualong One | 1150      |
| 2025  | China, Guodian & CNNC | Zhangzhou 2      | Hualong One | 1150      |
| 2025  | UK, EDF               | Hinkley Point C1 | EPR         | 1720      |
| 2026  | UK, EDF               | Hinkley Point C2 | EPR         | 1720      |

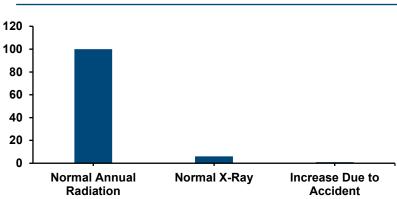
(1) U.S. Department of Commerce

# **Nuclear Power is Cost Effective**


Wind and solar power have significant cost disadvantages compared to nuclear power

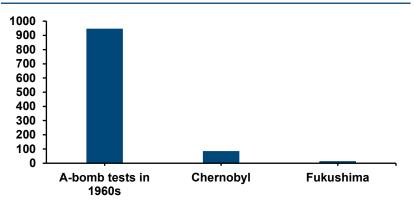


(1) US Energy Information Administration (2) Stanford University (3) Journal of Energy Policy and the OECD


# The Safety of Nuclear Power

### Nuclear energy is significantly safer than other forms of energy

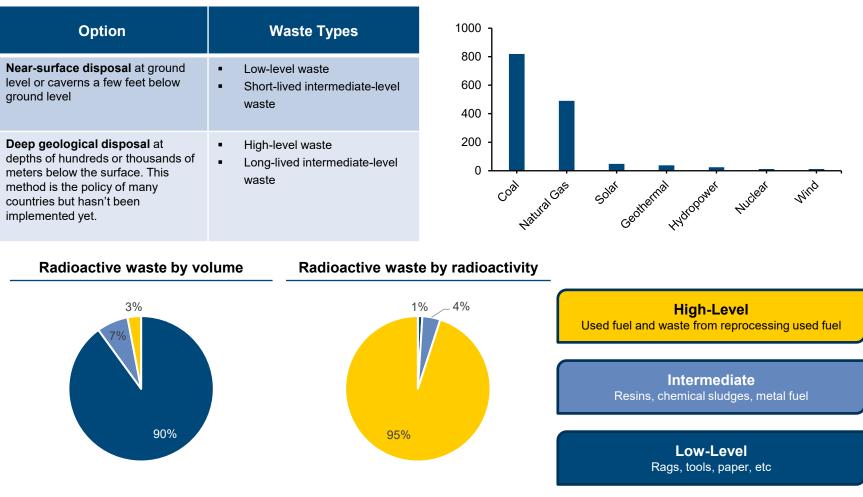



#### Harms from accidents are often exaggerated

- Out of over 17,000 cumulative reactor years, only 3 major accidents have happened
- Per official Soviet numbers, Chernobyl only resulted in 30 deaths
- "Nuclear power has *saved* 1.8 million lives to date by preventing the burning of fossil fuels." – James Hansen of Columbia University



### Three-Mile Island accident radiation (mrem/year)


#### Radiation Releases (PBq of 137-Cs)

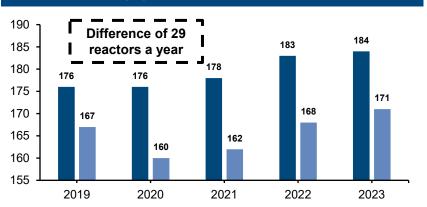


# **Radioactive Waste**

### Risks from radioactive waste are severely overblown

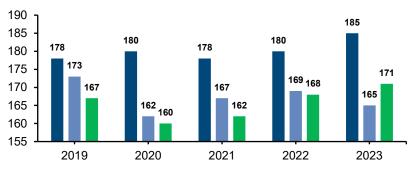
Utilities have many disposal methods to handle waste



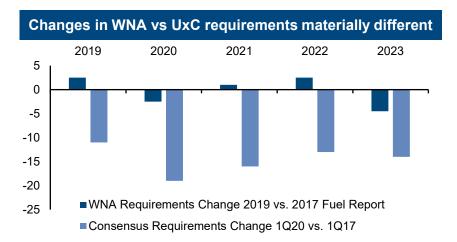

gCO2 Generated per kWh from energy sources

# **Potential Replacements for Uranium**

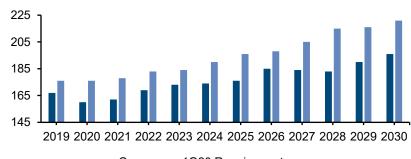
### Important in the long term, but currently not realistic


| Reprocessed Uranium                                                                                                                                   | Plutonium                                                                                                                                                                                                              | Thorium                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| ~5% of uranium from fuel rod can be recovered                                                                                                         | Plutonium produced as a by-product can be reused as new fuel                                                                                                                                                           | Proprietary mixture of uranium and thorium going to market in 2024                                                                     |
| This percentage is not expected to<br>increase. It is only economical when<br>supply is very low, or price is very high.<br>Not performed world-wide. | Nuclear non-proliferation requires<br>plutonium not be reprocessed as it can<br>be used in nuclear bombs.<br>Nuclear non-proliferation requires<br>plutonium not be reprocessed as it can<br>be used in nuclear bombs. | New development that is best used in<br>heavy-water reactors. Only one company<br>is planning to produce the fuel starting in<br>2024. |

# **UxC Flawed Reporting Leads to Inefficiencies in the Uranium Market**




#### WNA Reactor U<sub>3</sub>O<sub>8</sub> requirements are significantly higher

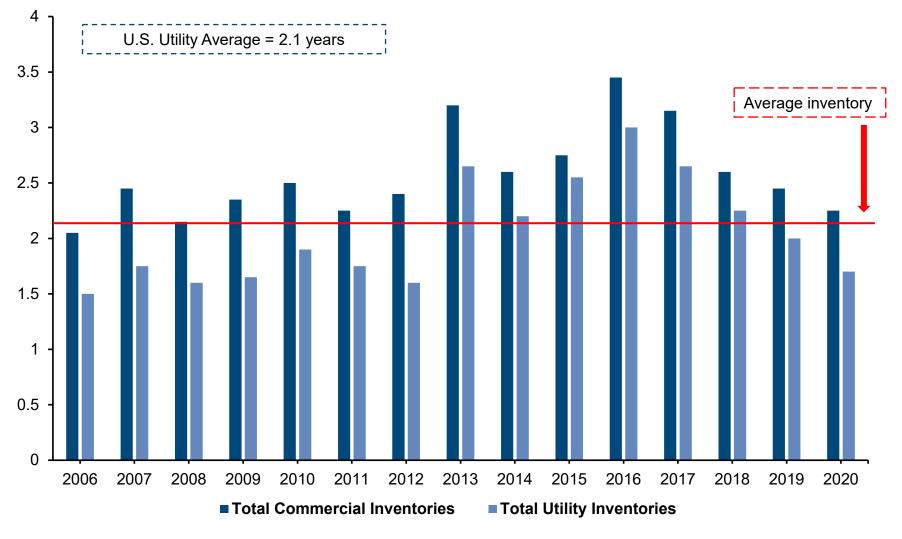





■1Q17 Requirements ■1Q18 Requirements ■1Q20 Requirements

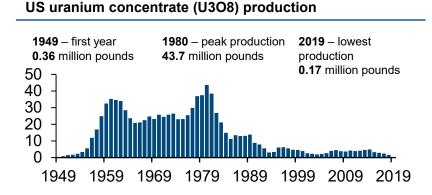


#### UxC vs WNA Global U3O8 Requirements




Consensus 1Q20 Requirements

WNA 2019 Fuel Report Requirements


# **U.S. Inventories Are Actually Below Normal Levels**

Total U.S. utility and commercial inventory in years



# **US Uranium Miners' Section 232 Petition**

#### Falling domestic U3O8 production has led to the disappearance of US uranium mining companies



80 60 40 20 0 1949 1959 1969 1979 1989 1999 2009 2019

#### US domestic production and foreign imports of uranium

#### The Uranium Producers of America petitioned the government for a 25% import quota on US uranium

 In July 2019, the Trump Administration rejected their proposal and instead formed the Nuclear Fuel Working Group in order to address the concerns regarding domestic uranium production and to ensure a comprehensive review of the entire domestic nuclear supply chain.

#### The ruling was viewed favorably by Cameco

 Tim Gitzel, Cameco's CEO: "Uranium supplied by Cameco or Canada for zero-carbon energy generation had never been a threat to US national security. <u>Cameco will participate in the efforts of this Working Group</u> <u>in any way we can.</u> As a long-term commercial producer, employer, supplier and investor in the US uranium and nuclear energy sectors, we want to see this industry succeed and grow.

<sup>(1)</sup> US Energy Information Administration

# Nuclear Energy in the 2020 Political Landscape

#### The Democratic Party is finally starting to support nuclear power again

"We support a technology-neutral approach that includes all zero-carbon technologies, including hydroelectric power, geothermal, existing and advanced nuclear, and carbon capture and storage."

"



"<u>Identify the future of nuclear energy.</u> To address the climate emergency threatening our communities, economy, and national security, we must look at all low and zero carbon technologies, such as small modular nuclear reactors at half the construction cost of today's reactors. That's why <u>Biden will support a research agenda</u> to look at issues, ranging from cost to safety to waste disposal system, that remain an ongoing challenge with nuclear power today." – *Joe Biden 2020 Campaign Platform* 

#### Recent legislation under the Trump Administration supports nuclear power and uranium

- Nuclear Energy Innovation and Modernization Act (2019)
  - Directed the Nuclear Regulatory Commission to make regulations move more quickly for establishing nuclear reactors
  - Established a faster licensing structure for advanced nuclear reactors
  - Imposed a cap on the NRC's fees for existing reactors
  - Created the Nuclear Fuel Working Group in order to "to develop recommendations for reviving and expanding domestic nuclear fuel production"
- 2020 Federal Budget
  - Sets aside \$150 million a year for 10 years to establish a strategic uranium reserve
    - Goal is to "to provide additional assurances of availability of uranium in the event of a market disruption"
- Nuclear Energy Innovation and Capabilities Act (2018)
  - Speeds up the development of advanced reactors in the US by eliminating regulations and financial barriers
  - Commits the government to further support of the private sector through cost-sharing partnerships and the development
    of research infrastructure

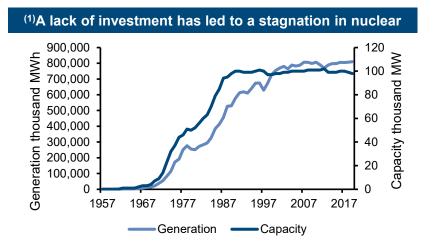
### Fuel buyers are waiting for this trade dispute to end before renewing contracts

<sup>(1)</sup>Recent draft amendments from the Department of Commerce and Rosatom look favorable for the industry

#### • A draft amendment submitted on October 5<sup>th</sup> would:

- Reduce U.S. imports of enriched uranium from Russia from 20% in 2020 to 15% in 2028
- Strengthen existing protections for the US commercial enrichment industry by reducing the Agreement's export limits
- Limits U3O8 imports from Russia to 5% in 2026, which would positively help U.S. and Canada uranium miners
- Allow for the fulfillment of U.S. customers' preexisting contracts for Russian uranium
  - · Utilities are not forced to renew these contracts immediately

#### <sup>(1)</sup>The Russian Suspension Agreement has played a role in making utility buyers wait to renew long-term contracts


#### • Long-term contracting declined 37% during H1 2020.

- Many utilities are on the sidelines waiting clarity on the Russian Service Agreement and the President's Nuclear Fuel Working Group
- Kazatomprom management indicated in their 2Q 2020 earnings call that fuel buyers will begin negotiations in the fall for long-term contracts after these issues have been addressed

# **Nuclear Power in the United States**

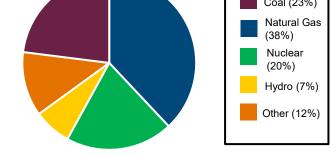
#### The nuclear power industry has largely remained unchanged since the 1980s

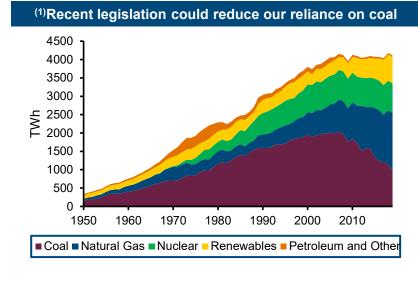
eia



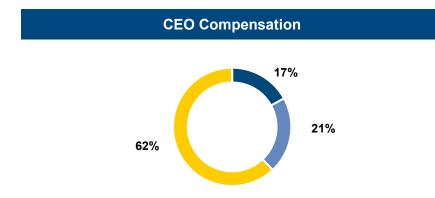
#### <sup>(1)</sup>California has been reluctant to invest in nuclear power




#### Locations of U.S. nuclear power plants

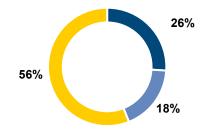

Source: U.S. Energy Information Administration, U.S. Energy Mapping System, April 2020

(1) U.S. Energy Information Administration

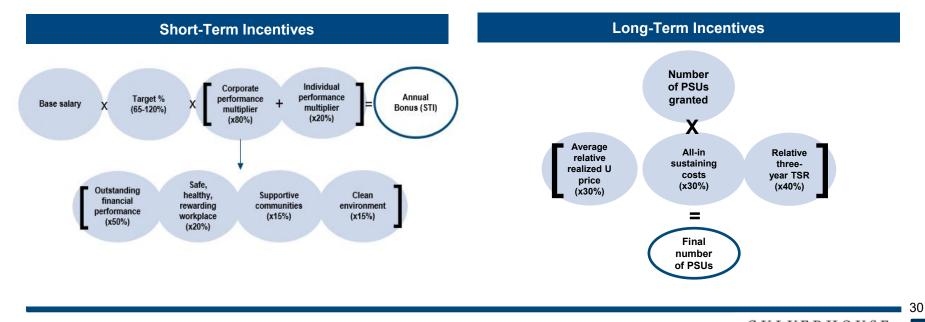

Coal (23%)
Natural Gas
(38%)

<sup>(1)</sup>Nuclear power provides 20% of our electricity



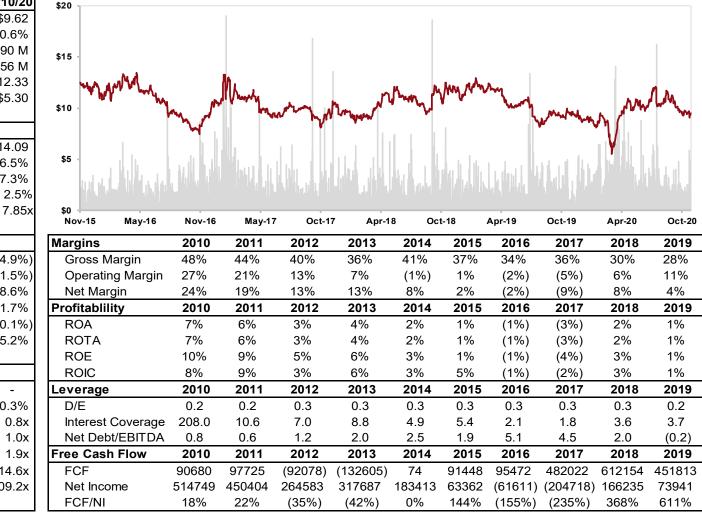



# **Management Compensation**




Base Salary Short-term incentive Long-term incentive

#### **Other C-Suite Compensation Plans**



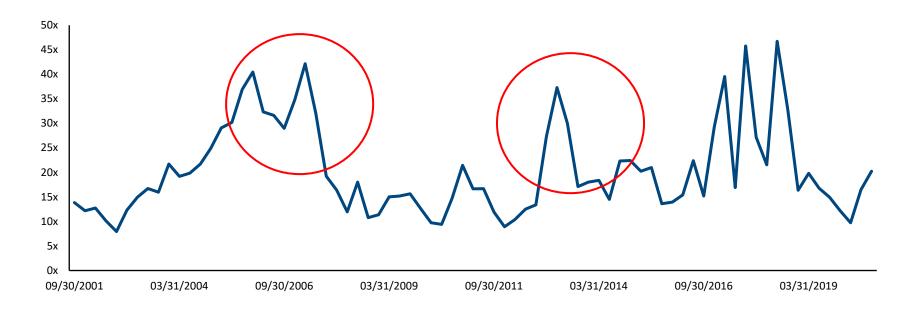

Base Salary Short-term incentive Long-term incentive



# **Cameco Corporation Tear Sheet**

| Stock               | 11/10/20    | \$2      |
|---------------------|-------------|----------|
| Price               | \$9.62      |          |
| Div Yield           | 0.6%        |          |
| Market Cap          | 3,807,990 M | \$1      |
| EV                  | 4,032,456 M | ψı       |
| 52 Week High        | \$12.33     |          |
| 52 Week Low         | \$5.30      | \$1      |
|                     |             | \$10     |
| Intrinsic Valuation |             |          |
| Value/Share         | \$ 14.09    |          |
| Upside              | 46.5%       | \$       |
| Discount Rate       | 7.3%        |          |
| LTGR                | 2.5%        |          |
| Exit Multiple       | 7.85x       | \$(<br>N |
| Business            |             | Ма       |
| 5 yr Rev CAGR       | (4.9%)      | (        |
| 5 yr EBIT CAGR      | (31.5%)     | (        |
| Gross Margin        | 8.6%        | 1        |
| EBIT Margin         | 1.7%        | Pro      |
| Net Margin          | (0.1%)      | F        |
| Tax Rate            | 115.2%      | F        |
|                     |             | F        |
| Market Valuation (  | TTM)        | F        |
| P/E                 | -           | Le       |
| FCF Yield           | 0.3%        | [        |
| P/B                 | 0.8x        | 1        |
| P/HBV               | 1.0x        | 1        |
| EV/Rev              | 1.9x        | Fre      |
| EV/EBITDA           | 14.6x       | F        |
| EV/EBIT             | 109.2x      | 1        |
|                     |             | F        |




| Profitability | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
|---------------|------|------|------|------|------|------|------|------|------|------|
| Gross Margin  | 48%  | 44%  | 40%  | 36%  | 41%  | 37%  | 34%  | 36%  | 30%  | 28%  |
| EBIT Margin   | 22%  | 21%  | 12%  | 11%  | 2%   | 9%   | -6%  | -6%  | 3%   | 5%   |
| EBITDA Margin | 34%  | 33%  | 24%  | 22%  | 16%  | 20%  | 9%   | 9%   | 19%  | 20%  |
| ROIC          | 8%   | 9%   | 3%   | 6%   | 3%   | 5%   | -1%  | -2%  | 3%   | 1%   |
| ROA           | 10%  | 9%   | 5%   | 6%   | 3%   | 1%   | -1%  | -4%  | 3%   | 1%   |
| ROE           | 7%   | 6%   | 3%   | 4%   | 2%   | 1%   | -1%  | -3%  | 2%   | 1%   |
| ROTA          | 7%   | 6%   | 3%   | 4%   | 2%   | 1%   | -1%  | -3%  | 2%   | 1%   |

| Solvency          | 2010  | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
|-------------------|-------|------|------|------|------|------|------|------|------|------|
| Debt/Equity       | 0.2   | 0.2  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.2  |
| Interest Coverage | 208.0 | 10.6 | 7.0  | 8.8  | 4.9  | 5.4  | 2.1  | 1.8  | 3.6  | 3.7  |

| Growth                  |      |
|-------------------------|------|
| 5-yr Revenue CAGR       | -5%  |
| 5-yr EBIT CAGR          | -32% |
| 5-yr EBITDA CAGR        | -13% |
| 5-yr Uranium Price CAGR | -4%  |

# Looking at EV/EBITDA

### Market re-rates CCJ as uranium prices increase



| Implied multiples in our Base model |    |       |    |       |    |       |           |    |       |  |
|-------------------------------------|----|-------|----|-------|----|-------|-----------|----|-------|--|
|                                     |    | 2021  |    | 2022  |    | 2023  | 2024      |    | 2025  |  |
| EBITDA                              |    |       |    |       |    |       | \$ 1,327  |    |       |  |
| EV                                  | \$ | 3,637 | \$ | 8,439 | \$ | 9,788 | \$ 11,335 | \$ | 8,876 |  |
| EV/EBITDA                           |    | 5.14  |    | 7.27  |    | 7.61  | 8.54      |    | 7.85  |  |

If the market assigns a multiple similar to the ones in previous periods of higher uranium prices to our DCF projections, CCJ has tremendous upside...